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The author's conjecture concerning the knot sequence whose associated B-spline
sequence has maximum max-norm condition number is disproved. Related condi­
tion numbers are explored and the corresponding conjecture concerning the
"worst" knot sequence for them is further supported by numerical results. © 1990

Academic Press, Inc.

At the end of a long discussion of the linear functionals which vanish at
all B-splines but one in [B2], I conjectured that D k, 00' the worst possible
condition with respect to the max-norm of a B-spline basis of order k,
occurs when the knots have high multiplicity, I went further than that on
p, 155 of [B3], where I displayed supposed values of Dk,w based on this
conjecture. The conjecture was based in good part on detailed calculations
of a closely related problem in [B 1], on a calculation of the number D k

which provides a bound for the worst B-spline condition with respect to
any p-norm, and on some calculations of the max-norm condition itself.
In particular, I wrote: "As with the earlier reported calculations of D k , it
appears from these calculations that" the worst condition "is taken on at
the 'middle' vertex of the simplex" of knot sequences over which the
maximization takes place. "This would mean that

with, := (,;W given by
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and 0 = PI < '" < Pk = 1 the extrema of the Chebyshev polynomial of
degree k - 1 for [0, 1]. This gives the following values for Dk, 00: ...." In
other words, I conjectured that the worst max-norm condition occurs for
a knot sequence without interior knots and, assuming this to be true,
computed and displayed this condition number for the first few values of
the order k as the value of D k ce .

Note that li(Nj,k,T(pJ) -111,,-,'= I!ailce with C, :=LiNi,k,taU) the unique
spline satisfying CT ( Pi) = (- )k i, j = 1, ..., k. This implies that C t is the
Chebyshev polynomial of degree k - 1 for the interval [0, 1] and the
numbers computed and displayed as Dk'CfJ in [B2, B3] are therefore
the absolutely largest coefficients in the expansion of the Chebyshev
polynomial as a linear combination of the B-splines Ni,k,t' Because of the
special nature of the knot sequence r, these B-splines reduce, on the
interval [0, 1] of interest, to the polynomials in the Bernstein form. This
led Lyche [L] to the observation that there was no need for numerical
calculations since the Bernstein form for the Chebyshev polynomial could
be written out explicitly and a simple expression for its absolutely largest
coefficient could be provided. Because of this connection, I shall refer to the
knot sequence without interior knots more briefly as the Bernstein knots.
The explicit formula allowed Lyche [L] to verify my conjecture that this
condition number grows like 2k

•

Since then, there have been several attempts at verifying the conjecture
that the worst max-norm condition is had by the Bernstein knots. It is
therefore important to point out with the aid of specific examples that the
conjecture is incorrect in general. In contrast, more detailed calculations
concerning the related number

, I IDk := sup sup sup laU)III) I L Ni,k"a(i) I
, i a "Ij i I

(with Ii := [ti , ti + k] the support of NJ have so far failed to shake the
corresponding conjecture that Dk is attained by the Bernstein knots.

COKDITION Nt:MBER DEFINED

It is convenient to define the condition number cond of the basis (({J;) of
a normed linear space S as the number

d
IlL, ({J,a(i)11 jlailoo

con := sup '[ sup I • ,
a Ila!:ec a I,L, ({J,a(I)I:
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For, assuming the basis (<p;) so normalized that the first supremum is 1,
this gives the equality

cond = sup IIAjll,
j

with

the jth coordinate functional for the basis (<p J
Let t:= (t;) be a knot sequence for splines of order k, i.e., t;< ti+b all

i, and let (N;) be the corresponding (normalized) B-spline basis for the
spline space S := Sk, t (see, e.g., [B3], for relevant definitions and details).
The N; are nonnegative and sum to 1, hence

IlL; N;a(i) II ro 1
sup = ,

a Iiall ro

where here and below we take

IIIII ro:= sup I/(t)1

in case t is finite. Denote by A; = A;, t the ith coordinate functional for this
basis and by

Iiall ro

its condition number.

A COUNTEREXAMPLE

Let I be the even piecewise cubic on [ -1, 1] with just one breakpoint,
at 0, given by

I(x):= {T3 (1 + (l-a)(x-l)),
I( -x),

x;:;'O;

x:::;O,

with T 3 = 4( )3 - 3() the cubic Chebyshev polynomial and a:= -! its
negative extreme point (see Fig. 1). Since DI(O+)=O,J is in e 2

, i.e., a
cubic spline with a simple knot, at O. One readily computes its cubic
B-spline coefficients (for the knot sequence t:= (-1, -1, -1, -1,
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FIG. 1. A cubic Chebyshev spline with one knot constructed from the eubie Chebyshev
polynomial.

0,1,1,1,1)) to be (1,-~,¥,-~,1). Since IifI,x=l, this implies that
cond4. t ~ 5.5, while the cubic Bernstein-knots condition number is 5
(see [B2, L]).

A LEMMA

The number

D k ."" := sup sup l/dist"".[fi. 1. fik 11(N" span(Nj)j;<;)
t

was introduced in [B2] as a convenient upper bound for the worst
B-spline condition number

condk := sup condky
t

The following lemma shows that thc two numbers are equal, hence that
condk = Dk.v. can be determined by local means.

LEMMA 1.

sup sup Vii: = sup P"k 1)1/'
t

where s is any knot sequence of the particular type

and 1iJ"11 := sUPf W'I/\Iflll with \Iflll the max-norm on 1:= [ -1, 1].
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Proof It is sufficient to prove that, for any t and any i,

Since Al )0 = 1 for any i, we have mini IIAil1 ~ 1 and, in particular, D ~ 1. If
t i+1 = t i+k - j, and without loss of generality, t i < t i+l' then AJ= l(ti+ d,
hence 11,1;[1 = 1~ D, and we are done in this case.

In the contrary case, t i+ 1 < ti+ k _ l' hence, after a linear change of the
independent variable, we may assume that l;+ 1 = -1, t i + k - 1 = 1. Now let t'
be the knot sequence obtained from t by inserting both -1 and 1 enough
times to increase their multiplicity to k - 1 and let i' be such that
t;'+J= ti+J for j= 1, ..., k-1. Then, with Aj the jth coordinate functional
for the basis (Ni,k, t') of the refined spline space of the same order,

since the (now standard) formula (cf., e.g., p. 116 of [B3])

AJ= L (-D)k-l-rljJ(UD1(U,
r<k

ljJ := (ti+ 1 -.) ... (ti+k-l -. )/(k - 1)!,

shows that AJonly involves the knots t i+J' j = 1, ..., k - 1, hence AJ= ,1;,1
for all 1 E S. This finishes the proof since

11,1;,11 = sup 1,1;,/1/11111 00 ~ sup IA;,/I/IIIIII~D. I
f f

COMPUTATION OF Dk,oo

According to Lemma 1, Dk,oo is the maximum of the function

with (sk+J1,:} the sequence of "interior" knots of the knot sequence
s = (s;)ik

- 3 in [ -1, 1] obtained from (J by ordering. The failed conjecture
amounts to the statement that the maximum is taken on at the "middle"
vertex of the domain of d.

For k = 3, there are no interior knots and, correspondingly, D 3,00 = 3,
the condition number of the Bernstein-knot B-splines.

For k = 4, there is just one interior knot, hence the calculation of D k , 00

amounts to the maximization of the function d(~) as ~ traverses the interval



EXACT CO:-<DITION OF B-SPLI't"E BASIS 349

[ - 1, 1]. A drawing of this function is available in Fig. 2; it is the hindmost
curve. This shows that d has a local minimum at ~ = 0 (necessarily a critical
point because of symmetry), and that the maximum (and, at least numeri­
cally, a good estimate for D4• a J is 5.5680..., which occurs when ~ ~ ±0.472.

It is, in some sense, not too surprising that, for k = 4, the maximum
occurs in the interior rather than at a vertex, since, after all, ~ = 0 is
necessarily a critical point, by symmetry, and there are, correspondingly,
two "middle" vertices. It is much more discouraging that, for k = 5, the
maximum is also taken on at an interior point, for, in this case, there is
only one "middle" vertex. Figure 3 shows d as a function of the two
interior knots. According to [B2, L], the max-norm condition in the
quartic case for the Bernstein knots is 11.666... But one computes in this
case that DS,a) ~ 12.088 and this occurs when the two interior knots, both
simple, are at the symmetric points ~ ±0.89.

The sharp drop toward the boundary values is an indication of the
general situation. Numerical experimentation for k ~ 8 seems to indicate
that, for k> 3, the maximum occurs at an s close to, but not at, a vertex,
with d rising sharply initially as one moves away from the boundary. For
odd k, the maximum seems to occur near the "middle" vertex. For even k,
it occurs at a point (two points for small k) near what passes for the
"middle" vertex in that case, i.e., with both 0 and 1 knots of the same
multiplicity and ! a simple knot.

1 1

5

3

FlG. 2. Condition number of cubic B-splines with two interior knots. Sections are shown
corresponding to one knot fixed while the other traverses [-1, 1], As the "fixed" knot
traverses [ -1, 1], the corresponding section is increasingly offset to provide "insight" into the
surface.
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For the evaluation of IIAil1 co' consider the "Chebyshev spline" Cs for the
knot sequence s, i.e., Cs E S:= Sk,., of max-norm 1, and maximally alter­
nating, i.e., there is an increasing sequence (p;)7 (with n := dim S) so that
Cs(Pi) = (-t - i, all j. (It can be shown that such Cs exists, and uniquely so;
see, e.g., [M]). Let e be the sequence of its B-spline coefficients. This
sequence necessarily strictly alternates in sign at least n - I times, hence all
eU) are nonzero. This implies that, for eachj, Ci := Cs/eU) is well defined
and in Ni + span(NJi"'i' therefore necessarily the error in the best uniform
approximation to Ni from span(NJi"'i = ker Ai," hence an extremal for
Ai," and therefore IIAi,sll co = 1/IICill co = leU)I. This reduces the evaluation
of the function d to be maximized to the numerical construction of the
Chebyshev spline, as is done in the following MATLAB (cf. [MBLK])
script.

function Esp, rho, a, iter] = chebmk(t, k, rho)
%
% Esp, rho, a, iter] =chebmk(t, kL rho])
%
% returns the Chebyshev spline for the given knot sequence Ll, ..., Ln + k,
% as well as the sequence rho of its alternating points and the sequence
% a of its B-spline coefficients. On input, rho is assumed to contain a
% reasonable first guess. If missing, the knot averages are used.
%
% By definition, the Chebyshev spline is the unique linear combination

-1 1

12

10

8

FIG. 3. Condition number of quartic B-splines with two interior knots.
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% of the B-splines for the knot sequence t which has norm I on [t-k, t. n - 1]
% and takes on the values 1 and ·-1 alternatingly the maximum possible number,
% i.e., n times, and is positive near t n + 1.

npk ~ length(t); n = npk - k;
t = [t(k) * ones(l, k), t(k + 1: n), t(n + 1) * ones(l, k)J;
% here I omitted statements which would initialize rho as the average of
% k 1 neighboring knots in case the initial guess provided is inadequate.

rho(l) = t(k); rho(n) .0. t(n, 1); % the first and last rho are the endpoints of the
% interval.

trho = rho(2: n - 1); % only the interior rho will be iterated on.
y = ones(rho); % set up the oscillating data to be matched by...
y(n -- 1: - 2: 1) = -y(n - 1:-- 2: 1);% ... the Chebyshev spline.
change = 1; tsize = rho(n)··- rho(l); % set up convergence control.

iter=O;
while (ehange>l·e-S)&(iter<S);

sp =spcpi(t, rho, y); % compute the spline with knot sequence t which takes
% on the value y(j) at rho(j), j = 1, ..., n.

dsp = spder(sp); % construct the first derivative of this spline...
drho = spval(dsp, trho); % ... and evaluate it at the interior rho.
ddrho= spval(spder(dsp), trho); % also evaluate the second derivative of that

% spline at the interior rho.
drho = ..drho ·/ddrho; % compute the Newton step...
trho = trho T drho; % ... and add it to the current interior rho.
% prevent modified rho from violating the expeeted interlacing by pulling
% back on the proposed Newton step if necessary:
count =0;
while (any(trho < t(3: n)) I any(trho > t(k + 1: n + k - 2)) ! any(diff(trho) <=0)),

drho = drho/2; trho = trho - drho;
count = count.;.. 1; if (count> 20), error ("no convergence"), end

end
ehange=max(abs(drho))/tsize % compute relative size of the step taken.
rho(2: n -1) = trho; % update rho.
iter = iter + 1;

end

[dummy, al = spbrk(sp); % recover the B-spline coefficients a of the Chebyshev
% spline.

351

The calculations become quite delicate with increasing k and increasing
nonuniformity of the knot sequence. I have not found a certain rule for
choosing a satisfactory first guess, but have very often succeeded with the
aid of continuation. For example, if the Chebyshev spline for the same
(interior) knots but of one order lower is already available, then the
midpoints between its neighboring extreme points often provide good
first guesses for the interior extreme points of the Chebyshev spline to be
computed.

Note that the "Chebyshev spline" used here is in general different from
the "Chebyshev-Euler spline" used in Schoenberg and Cavaretta's solution
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ESC] of the Landau problem on the halfline, and which also appears
prominently in Tikhomirov's work (cr. [T]). The latter might be called
"perfect Chebyshev splines" since they are Chebyshev splines whose highest
nontrivial derivative is absolutely constant, a feat achieved only by an
appropriate choice of knots. The more general Chebyshev splines of inter­
est here have most recently appeared in Demko's [D] nice proof of the
existence of "good" interpolation points for arbitrary knot sequences and,
almost simultaneously, in My;rken [M], a reference of which I became
aware only recently. My;rken devotes an entire chapter to the Chebyshev
spline (which he calls, perhaps more helpfully, the "equioscillating spline"),
proving its uniqueness by a detailed study of the sign structure. I note that
uniqueness can also be deduced from the fact (mentioned earlier) that Cj

is an extremal for Aj .

THE 1-NoRM CONDITION NUMBER

When the norm on S = Sk, t is the 1-norm,

11/111:= fil 1/(t)1 dt,
tk

It IS preferable to use also the 1-norm instead of the max-norm for the
B-spline coefficients and to use a different normalization for the B-splines,
too. Precisely, define

with

1>: /1 ---+Sk,t cL1[tb tn + 1]: af-+ "I Mja(j)
j

and

Since liMjll! :;::; 1 for all j, we have

111>11 = sup IlL M j a(j)111 1,
a Ilalll

hence

D k ,l :=supcondL=sup IlcP- 1 11.
t t
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It is worthwhile to point out that, by duality, this number coincides with
the Favard constant [B1]

. f{liDkfl. 'j'L(k) £'- I' 1,
(k)

In I ,ex:' E ex:') - J 0 on t JK :=sup .
fo, t maxi k! I[ti' '00' ti I k]j~1

which measures how small one can make the kth derivative of an inter­
polating function (relative to the kth divided differences [ti' 00', ti-'-k] j~

of the given data). This fact has also been found by Otto [0], by rather
different means.

LEMMA 2. Dk,l =K(k).

Proof Since k! [ti' 00" t i td f = I MiD~; we can write K(k) also as

K(k)
inf{ I gil 00: I M} g = I M} go, all}}

= sup sup
t gOeL" max} II II,{} gol

This shows that

K(k) = sup IIFI,

o 1

9

7

5

3

FIG. 4. ').., for k = 5 as a function of two interior knots.
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with
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and fli:= fli,k,t:= ((t;+k - ti)/k) Ai,k,t the linear functionals dual to the Mis.
But this implies that F= ((/>*)-1 and, in particular, IIFfl = 11(/>-111. I

It follows that the calculations of K(k) in [Bl J are pertinent for the
calculation of Dk,l' These calculations are based on the fact that

K(k) ~ 1+2(k-l) sup 11,1,11,

with O=SI = ... =Sk<Sk+l < ... < 1=S2k-l = ... =S3k-2 and A the
linear functional on Sk.ScLl[O, IJ which carries LjMja(J) to LF?-ka(J);
see [B1J for details.

It is possible to compute 11,1,11 as a function of (sk+j)1- 2 by constructing
the unique absolutely constant step function h on [0, 1J with 2k - 2 jumps
for which JJ = J/if for all f E S. The calculations are almost identical to
those reported in the final section. They show that, for small k, the
supremum is achieved at one of the vertices of the domain over which the
supremum is taken, i.e., when there are no interior knots. This is illustrated
in Fig. 4 for k = 5.

THE p-NORM CONDITION NUMBER

Finally, consider the condition number of the B-spline basis when the
norm on S is the p-norm,

(f
tn +1 )1/P

Ilfll p := tk If(tW dt .

It is shown in [BOJ (see also [B2 J) that

D;1 IIE1
/Pa ll p ~ II ~ Nja(J)t ~ IIE 1

/Pa ll p ,

with

and

Dk := sup sup k II flill (i),

i
all},
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In particular, D k is an upper bound for both D k, cx) and D k, I' while also
kDk,1 ~ Dk . Since flj,t = ((tjl k - tj)/k) I_j,t> it foHows that

with 51 = ... =Sk=O<Sk+1 < ... <S2k 1< 1=S2k= ... =S3k-I'

Explicitly,

Hence, after a linear change of variables which carries the typical knot
interval Ii = [t i' t i + k J to the unit interval,

with O=Sk:;;;;Sk+l:;;;; ... :;;;;s2k=1. Since this involves the norm of

on S:= Sk,s n L I [0, 1J, the knots Sj for j < k or j> 2k are immaterial; I
take them to be °or 1, respectively. The remaining knots lie in [0, 1].

Let n := dim S. According to [B2J, ,I}.li is computable as the absolute
height I:hll ex:; of the unique absolutely constant step function h on [0, 1J
with n steps which represents A in the sense that

for all f EO S.

If, more precisely, 0= Sk-t r < Sk+r+ 1> then !lh,1 ex:; equals the norm of 10 = I·U

on S=Sk,tnLI[O, IJ, with

and

l=k-r.

The following MATLAB script returns this step function h for given I and
given intt := (tkl r' I' ... , tn )·

function [bela, tau, iterJ = stepmk(left, intt, k, tau)
%
% [beta, tau, iter J~ stepmk(left, intt, k, [, tau J)
%
% returns the absolutely constant step function with steps
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b = zeros(n, I); b(left) = k; b(left - I) = -k;
eps = ones(n, I);
eps(l: 2: n) = -eps(l: 2: n);
ttau = tau(2: n); gap = I;

% beta(i), i= I, ..., n and breaks O=tau(I)< ... < tau(n + 1)= I which
% represents the (left )th coordinate functional of the B-spline basis for the
% knot sequence t := [zeros(l, k) intt ones(l, k)], hence provides the norm of
% that functional wrto the I-norm on [0,1].
%
% On input, tau is assumed to contain a reasonable first guess.
% If missing or inappropriate, the knot averages are used.

tol= l·e-4;
t= [zeros(l, k) intt ones(l, k)];
npk = length(t); n = npk - k;

% here I omitted statements which would initialize tau as the average of
% k neighboring knots in case the initial guess provided is inadequate.

dt=k * diag(ones(l, n).j(t(l +k:n+k)-t(l: n))); % matrix needed in the computation
% of change in tau.

% generate the right side...
% and a properly alternating
% sequence.

iter=O;
while (0= =0);

% generate the coefficient matrix. (Here, and below, spcol(s, k, tau) is the
% matrix whose ith row consists of the values at tau(i) of all the
% B-splines of order k for the knot sequence s, and diff(B) is the
% matrix with entries B(i + I, j) - B(i, j).)
A = (diff(spcol([t, I], k + I, tau)))';

beta = A\b; % compute the solution of the equation A *beta = b
betamin = miniabs(beta)); % compute the relative nonconstancy.
gap = (max(abs(beta)) - betamin)/betamin; %... of abs(beta) and...
beta-gap = [beta(l), gap * I .e + 4] % ... print it out, along with beta( I)

if (iter> 0) & ((gap < toll I (iter> 10)), return; end
% generate the change in tau:
c= [spcol(t, k, ttau) * dt, zeros(n-I, I)];
y= [-diff(c'),A * eps]\b;
dtau = -(y(l: n - I )./diff(beta))';
ttau = ttau + dtau;

% prevent changed tau from violating the expected interlacing by pulling
% back on the Newton step if necessary:
count =0;
while (any(ttau < t(l: n -I)) I any(ttau > t(k + 2: n + k)) I any(diff(ttau) < =0)),

dtau = dtau/2; ttau = ttau - dtau;
count = count + I; if (count> 20), error("no convergence"), end

end
tau = [0 ttau I];
iter = iter + 1;

end
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o

10

7

FIG. 5. J.k,.1 for k ,~4 as a function of thc two interior knots (t k ' 1. tk ' 2) E (0, 1f

Figures 5 and 6 parallel Fig. 2 and 3 and illustrate thereby that the func­
tion being maximized in order to obtain D k does appear to be taking on
that maximum at a "middle" vertex of the domain. Extensive calculations
with the above script for k ~ 21 have not produced any counterexample to
the conjecture that 11)'k,sil is maximized when s has no interior knots.

It is also evident that IIAk.s:1 is minimized when s has just one interior
knot, of maximal multiplicity, i.e., of multiplicity k - L The characteriza­
tion of I'),il as the max-norm of ),'s unique representer h in the form of an
absolutely constant step function with n steps makes it easy to sec that, in
that case, the norm is independent of the location of that interior knot.

1

---+------L,

o

17

20

I

FIG. 6. '}'k 1,t for k~·5 as a function ofthc two interior knots Uk. j, t k + 2)E(O. If
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Finally, the calculations of the representing step function h presented no
numerical difficulties in all cases tried (up to k = 21), in marked contrast to
the calculation of the Chebyshev splines.

CONCLUSION

There is numerical evidence that, in calculations devoted to bounding
the p-norm condition number of the (appropriately scaled) B-spline basis,
the extreme case occurs for a knot sequence without interior knots, while
simple numerical examples show this not to be the case for the max-norm
condition number itself. This is disappointing since it is only in the latter
case that there seems to be a formula available for the condition number
when there are no interior knots. Hence, even if the worst-case conjecture
for the bound calculations for the p-norm condition number were proved,
it would, ofThand, not help in settling the problem of interest. This is the
proof that all of these numbers, Dk,oo, Dk,l = K(k), and Db grow exactly
like 2\ as is suggested by numerical experiment.

Note added in proof Following a suggestion from Phil Smith of IMSL, I have modified
the iterative calculation of the Chebyshev spline (described in the MATLAB script chebmk
above) to have the current extrema determined locally. This has made the calculations much
less sensitive. See the Chebyshev spline example in the forthcoming "Spline Toolbox" to be
published by MathWorks Inc., Sherborn, MA. This toolbox also contains the various spline
routines referred to in the MATLAB script chebmk.
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